Cal 6 Multiplier des nombres par 10, 100, ...

17,83 c'est: 1 dizaine 7 unités 8 dixièmes 3 centièmes Si on prend dix fois ce nombre (x10),

on obtient : 10 dizaines 70 unités 80 dixièmes 30 centièmes En faisant les échanges « dix contre un », on aura : 1 centaine 7 dizaines 8 unités 4 dixièmes. Donc : 178,4.

Quand on multiplie par 10, les chiffres changent de valeur : ils sont décalés d'un rang vers la gauche. Quand on multiplie par 100, ils sont décalés de 2 rangs vers la gauche (de 3 rangs quand on multiplie par 1 000 ...)

Le procédé fonctionne aussi bien pour les nombres entiers (par exemple pour 41×100) que pour les nombres décimaux $(4,1 \times 100)$, mais il ne faut pas oublier de mettre des 0 s'il n'y a pas de dizaines ou d'unités...

En utilisant un tableau, il suffit de déplacer tous les chiffres d'une colonne vers la gauche quand on multiplie par 10 (de 2 colonnes vers la gauche quand on multiplie par 100...).

	centaines	dizaines	unités		dixièmes	centièmes	millièmes
17,83 x 10 =		_ 1	7	•	8	3	
178,3	1	7	8	,	3		
4,1 x 100 =			_ 4	2	_ 1		
410	4	1	0	,			

Cal 6 Multiplier des nombres par 10, 100, ...

17,83 c'est: 1 dizaine 7 unités 8 dixièmes 3 centièmes Si on prend dix fois ce nombre (x10),

on obtient : 10 dizaines 70 unités 80 dixièmes 30 centièmes En faisant les échanges « dix contre un », on aura : 1 centaine 7 dizaines 8 unités 4 dixièmes. Donc : 178,4.

Quand on multiplie par 10, les chiffres changent de valeur : ils sont décalés d'un rang vers la gauche. Quand on multiplie par 100, ils sont décalés de 2 rangs vers la gauche (de 3 rangs quand on multiplie par 1 000 ...)

Le procédé fonctionne aussi bien pour les nombres entiers (par exemple pour 41×100) que pour les nombres décimaux $(4,1 \times 100)$, mais il ne faut pas oublier de mettre des 0 s'il n'y a pas de dizaines ou d'unités...

En utilisant un tableau, il suffit de déplacer tous les chiffres d'une colonne vers la gauche quand on multiplie par 10 (de 2 colonnes vers la gauche quand on multiplie par 100...).

	centaines	dizaines	unités		dixièmes	centièmes	millièmes
17,83 x 10 =		_ 1	7	•	8	3	
178,3	1	7	8	,	3		
4,1 x 100 =			4	2	_ 1		
410	4	1 -	0	,			